PRECISION DES RESULTATS DE L'ESSAI PRESSIOMETRIQUE

PRECISION RESULTS OF PRESSUREMETER TEST

Jacques MONNET¹, ¹ Gaiatech, Seyssinet, France

RÉSUMÉ – La présente étude porte sur la détermination des erreurs admissibles sur les les paramètres issus de l'essai pressiomètrique (E_M , p_{LM}), pour une meilleure estimation de la précision de la conception des fondations. La théorie des erreurs est utilisée et l'influence de la précision des mesures sur les résultats pressiométrique est indiquée.

ABSTRACT – This study concerns the determination of permissible errors on the parameters from the pressuremeter test (E_M , p_{LM}), for a better estimate of the accuracy of the design of foundations. Error theory is used and the influence of the accuracy of the measurements on the pressuremeter results is indicated.

1. Introduction

Le développement de méthodes numériques et la nécessité de quantifier la précision des calculs obligent à préciser les erreurs admissibles sur les données de calcul et en particulier sur les paramètres issus de l'essai pressiomètrique (E_M , p_{LM}), utilisés pour la conception des fondations (AFNOR, 2013).

On suppose que les données du pressiomètre suivent une répartition de Gauss avec une valeur moyenne et un écart type. La théorie des erreurs (GUM, 2008 ; Gachon, 1969 ; Rouaud, 2013) est utilisée et ses relations sont appliquées aux méthodes de détermination standardisées (AFNOR, 2015). Le calcul de l'erreur est finalement appliqué à une série d'essai pressiomètriques utilisés comme référence par le Projet National français ARSCOP (Jacquard et Varaksin, 2018). Cette analyse permet de tirer des conclusions sur l'influence de chaque mesure individuelle (pression, volume, diamètre, longueur,...), sur la précision des corrections apportée à la pression et au volume, et finalement sur la précision des paramètres pressiomètrique que sont le module pressiométrique E_M et la pression limite p_{LM} ce qui est d'un grand intérêt pour le dimensionnement des ouvrages (AFNOR, 2013 ; Monnet, 2016).

2. Théorie des erreurs - application au pressiomètre

Il existe une assez grande variabilité des résultats pressiométriques pour le même sol (Jacquard et Varaksin, 2018), liés à divers paramètres mécaniques (précision de la mesure brute des pressions, des volumes, des dimensions de la sonde), de l'interprétation (précision de la plage de pression ou de volume, choix de l'extrapolation) ou de réalisation (qualité du forage ou de l'opérateur) (Bigot, 2004). Cependant la bibliographie concernant le calcul des erreurs appliqué au pressiomètre est limitée et orientée soit vers une analyse de la précision des mesures (Cambridge in Situ, 2011) mais sans aller jusqu'à la précision des grandeurs pressiométriques, soit vers une analyse numérique de la précision (Genetay et Mehdizadeh, 2018), soit par une analyse théorique (Bigot, 2004) mais sans analyse de la précision du module pressiométrique, de la pression limite et de l'appliquer à des exemples pratiques d'essais de façon à pouvoir prévoir la précision des

résultats pressiométriques liées aux mesures, aux dimensions de la sonde et à l'interprétation.

2.1. Notions de Fautes et d'erreur - Composition des erreurs

Nous utilisons les notions suivantes : la *mesure vrai n'existe pas*, il existe toujours une incertitude de mesure liée à l'imperfection de nos sens et/ou de nos instruments ; les *erreurs s'ajoutent toujours*, et ne se retranchent jamais les unes des autres ; *l'erreur est inévitable*, toute mesure est entachée d'une erreur; la *faute est une erreur grossière* liée au non respect du protocole de mesure ; la *tolérance est la limite maximale de l'erreur*, au delà de laquelle on parle de faute.

Bien que la distribution de l'erreur de mesure puisse être variable, on constate que la majorité des erreurs liées à la mesure visuelle d'une quantité se répartissent selon une courbe de Gauss (Gachon, 1969 ; Poreba, 2014), avec une moyenne des mesures \overline{X} (1) ; un écart type σ ou variance ou Erreur moyenne quadratique E_{mq} (2) ; une erreur probable Ep (3) ; une tolérance T (4). C'est l'hypothèse suivie ici.

La théorie des erreurs peut être trouvée dans (GUM, 2008 ; Lalère, 2011). L'erreur moyenne sur une fonction (5) simple (addition ou soustration) est calculée comme la somme des carrés de variance de chaque variable (6). Si la fonction est composée (7), son erreur s'obtient par la relation (8).

$\overline{\mathbf{X}} = (\sum_{i=1}^{n} \mathbf{X}_i)/n$	(1)
$\sigma = E_{mq} = \sqrt{\{ [\sum_{i=1}^{n} (X_i - \overline{X})^2] / (n-1) \}}$	(2)
$E_p = 2/3 E_{mq}$	(3)
$T = 4. E_p$	(4)
$\mathbf{F} = \mathbf{x} + \mathbf{y} - \mathbf{z}$	(5)
$\sigma_{\rm F}^2 = \sigma_{\rm x}^2 + \sigma_{\rm y}^2 + \sigma_{\rm z}^2$	(6)
F = (a.x.b.y)/(c.z)	(7)
$\sigma_{\rm F}^2 = \sum_{(i=1)}^n (\partial F / \partial x_i)^2 \cdot \sigma_i^2$	(8)

2.2. Précision du module pressiométrique E_M

2.2.1. Formule de calcul du module pressiométrique

Le module pressiométrique est calculé par l'expression (9) sur la plage pseudo élastique entre les points p_1 et p_2 . Pour le module élastique E^e on utilise les points p_3 et p_4 extrêmes du cycle avec les formules (9) à (12) du module pressiométrique.

Les variables de calcul sont le volume de la sonde V_s (10) qui dépend de la longueur de la sonde I_s, du diamètre du tube d'étalonnage d_i, de la correction en volume V_p. Les pressions corrigées p₁ et p₂ se calculent par (11) qui dépendent de la pression mesurée p_{r1}, de la relation de résistance propre de la sonde p_{el}(V_e) et de la profondeur z de la sonde dans le forage. Les volumes corrigés V1 et V2 se calculent par (12) et dépendent du volume mesuré Vr1, du coefficient de dilatation propre d'appareillage a, de l'ordonnée à l'origine de la droite de dilatation d'appareillage. Pour plus de précision sur ces différentes variables, on consultera (AFNOR, 2015).

$$E_{M} = 2.66. [V_{s} + (V_{1} + V_{2})/2]. (p_{2} - p_{1})/(V_{2} - V_{1})$$
(9)

$$V_{\rm s} = 0.25. \,\pi. \,l_{\rm s}. \,d_{\rm i}^2 - V_{\rm p} \tag{10}$$

$$p_1 = p_{r1} - p_{el}(V_e) + \gamma_w.z$$
 (11)

$$V_1 = V_{r1} - a. p_{r1}$$
 (12)

2.2.2. Précision des variables principales

Dans la suite du document le terme erreur désignera l'écart type (au sens gaussien) de l'erreur de mesure. L'erreur sur les variables principales se calcule également par la loi de propagation des erreurs pour les fonctions composées (8). On obtient alors pour le calcul du volume de la sonde Vs (10): les dérivées par rapport à la longueur de la sonde I_s (13), par rapport au diamètre du tube de calibration d_i (14) ; la dérivé par rapport à V_p est égale (15) ; l'erreur sur le volume de la sonde V_s (18) dont la définition est (10). A noter que V_p s'obtient par l'ordonnée à l'origine de la droite de régression. Sa précision suit la même règle que celle de la pression limite. L'erreur moyenne d'estimation sera σ_r (16), l'écart type de l'erreur sur V_p sera alors (avec y =V et x=p et \hat{y} le volume de la sonde V_s sera σ_{v_p} (17). Finalement l'erreur sur la volume de la sonde V_s sera σ_{v_s} (18), avec t la fonction de Student correspondant à l'espérance normale.

$$\partial V_s / \partial l_s = 0.25. \pi. d_i^2$$
(13)

$$\frac{\partial V_s}{\partial d_i} = 0, 5. \pi. l_s. d_i \tag{14}$$

$$\frac{\partial V_s}{\partial V_p} = -1 \tag{15}$$

$$\sigma_r = \sqrt{(\sum_{i=1}^n (y_i - \hat{y})^2 / (n-2))}$$
(16)

$$\sigma_{\rm Vp} = t_{(1-\alpha/2)}^{(n-2)} \sigma_r \cdot \sqrt{1 + \left(\frac{1}{n}\right) + \left\{\frac{(0-\bar{x})^2}{\left[\sum_{(i=1)}^n (x_i - \bar{x})^2\right]}\right\}} + \sigma_{\rm Vr} = \Delta x$$
(17)

$$\sigma_{\rm Vs} = \sqrt{0.0625.\,\pi^2.\,d_i^4.\,\sigma_{\rm ls}^2 + 0.25.\,\pi^2.\,l_s^2.\,d_i^2.\,\sigma_{\rm di}^2 + \sigma_{\rm Vp}^2} \tag{18}$$

On peut déterminer l'erreur σ_p (24) sur les pressions corrigées p_1 et p_2 dont la définition est (11), avec V_e qui peut s'estimer par la courbe polynomiale (19)

$$\begin{split} V_{e} &= a_{0} + a_{1} \cdot p_{el} + a_{2} \cdot p_{el}^{2} + a_{3} \cdot p_{el}^{3} & (19) \\ \partial V_{e} / \partial p_{el} &= a_{1} + 2 \cdot a_{2} \cdot p_{el} + 3 \cdot a_{3} \cdot p_{el}^{2} & (20) \\ \partial p_{el} / \partial V_{e} &= 1 / (a_{1} + 2 \cdot a_{2} \cdot p_{el} + 3 \cdot a_{3} \cdot p_{el}^{2}) & (21) \\ \partial p_{1} / \partial p_{r1} &= 1 & (22) \\ \partial p_{1} / \partial z &= \gamma_{w} & (23) \\ \sigma_{p} &= \sqrt{\left[\sigma_{pr}^{2} + \sigma_{Ve}^{2} / (a_{1} + 2 \cdot a_{2} \cdot p_{e} + 3 \cdot a_{3} \cdot p_{e}^{2}) + \gamma_{w}^{2} \cdot \sigma_{z}^{2}\right]} & (24) \end{split}$$

On trouve la dérivée du volume corrigé V₁ ou V₂ par rapport au volume mesuré V_{r1} ou V_{r2} (25), par rapport à la pression mesurée p_{r1} (26), par rapport au coefficient a de la régression linéaire (27). L'erreur σ_V (29) sur les volumes corrigés V1 et V2 (12) dépend de l'erreur de la pente de la droite de régression σ_a (28) qui est fonction de σ_r l'erreur moyenne d'estimation en régression linéaire (16)

$$\frac{\partial V_{1}}{\partial V_{r1}} = 1$$
(25)

$$\frac{\partial V_{1}}{\partial p_{r1}} = -a$$
(26)

$$\frac{\partial V_{1}}{\partial a} = -p_{r1}$$
(27)

$$\sigma_{a} = \sigma_{r} / \sqrt{\left[\sum_{(i=1)}^{n} (x_{i} - \bar{x})^{2}\right]}$$
(28)

$$\sigma_{V1} = \sqrt{\left[\sigma_{Vr1}^{2} + a^{2} \cdot \sigma_{pr1}^{2} + p_{r1}^{2} \cdot \sigma_{a}^{2}\right]}$$
(29)

2.2.3. Précision sur le module Ménard
$$E_M$$

Le calcul d'incertitude nécessite la détermination des dérivées partielles du module E_M (9) par rapport aux variables principales, par rapport au volume de la sonde V_s (30), par rapport aux volumes corrigés V_1 et V_2 (31), par rapport aux pressions corrigées p_1 et p_2 (32), ce qui permet d'avoir l'erreur σ_{Em} (33) sur E_M grâce à la relation de propagation des

erreurs pour les fonctions composées (8) . L'erreur sur le module élastique E^e est calculée par les mêmes relations :

$$\partial E_{\rm M} / \partial V_{\rm s} = 2,66. \, (p_2 - p_1) / (V_2 - V_1)$$
(30)

$$\partial E_{\rm M} / \partial V_1 = 1,33. (p_2 - p_1) / (V_2 - V_1). \{1 + 2/(V_2 - V_1)[V_{\rm s} + (V_1 + V_2)/2]\}$$
 (31)

$$\partial E_{\rm M} / \partial p_1 = 2,66. [V_{\rm s} + (V_1 + V_2)/2].1/((V_2 - V_1))$$
 (32)

$$\sigma_{\rm Em} = \{ (\partial E_{\rm M} / \partial V_{\rm s})^2 . \sigma_{\rm Vs}^2 + 2 . (\partial E_{\rm M} / \partial V_{\rm V1})^2 . \sigma_{\rm V1}^2 + 2 . (\partial E_{\rm M} / \partial p_1)^2 . \sigma_{\rm p1}^2 \}^{0.5}$$
(33)

2.3. Précision de la pression limite p_{LM}

2.3.1. Formule de calcul de la pression limite

La courbe pressiométrique est transformée en une droite par régression linéaire (34) des valeurs corrigées {p ; 1/V}. Cette équation se transforme en une équation hyperbolique (35), ce qui permet de déterminer la pression limite Ménard par (36), avec A pente de la droite de régression en V⁻¹ et B son ordonnée à l'origine :

$$V^{-1} = A. p + B$$
 (34)
 $p = -B/A + 1/(A.V)$ (35)

$$p_{LM} = -B/A + 1/[A.(V_s + 2.V_1)]$$
(36)

2.3.2. Précision de la pression limite

Dans ce cas où la pression limite p_{LM} et le volume V_L se situent sur un segment de droite entre deux points de mesure P_1 et P_2 qui définissent un segment de droite de pente A et d'ordonnée à l'origine B. L'équation (34) se représente dans la théorie par une droite de régression (37), avec y pour V⁻¹, x pour p, β_0 pour B et β_1 pour A. Comme on cherche l'erreur sur p_{LM} , il faut déterminer l'erreur de x et se ramener à l'équation théorique (38), dont les coefficients β'_0 et β'_1 sont donnés par (39) et (40) (Rouaud, 2013). L'intervalle de confiance de x, est trouvé pour un risque donné α à l'aide de la relation Δx (42) dans laquelle t représente la loi de Student à n-2 degré de liberté. Pour se ramener au cas du pressiomètre et de la pression limite, on peut remarquer que la variable y correspond à V_L^{-1} , \bar{y} correspond à $\overline{V_L^{-1}}$, y_i correspond à V_i^{-1} , Δx correspond à la variation admissible de la pression p_{LM}, n correspond au nombre de mesures. Si on fait l'hypothèse d'une répartition gaussienne des mesures, on constate que la variance correspond à une espérance de mesure de 34,1%. La relation théorique qui permet de déterminer la variation de la pression limite avec une probabilité de $\alpha = 34,1\%$ et une fonction de student t probabiliste de loi normale est σ_{pLM} (43).

$$\begin{aligned} \widehat{y} &= \beta_1 \cdot x + \beta_0 \\ \widehat{x} &= \beta'_1 \cdot y + \beta'_2 \end{aligned} \tag{37}$$

(- -)

$$\beta_1' = [\sum_{i=1}^n (x_i - \bar{x}) \cdot (y_i - \bar{y})] / [\sum_{i=1}^n (y_i - \bar{y})^2]$$
(39)

$$\beta_0' = \bar{x} - \beta_1' \cdot \bar{y}$$

$$\sigma = \sqrt{(x - \bar{x})^2} / (n - 2)$$
(40)
(41)

$$\sigma_r = \sqrt{\{(\sum_{i=1}^n (x_i - \bar{x})^2)/(n-2)\}}$$
(41)

$$\Delta x = t_{(1-\alpha/2)}^{(n-2)} \sigma_r \sqrt{\left\{1 + 1/n + (y - \bar{y})^2 / \left[\sum_{i=1}^n (y_i - \bar{y})^2\right]\right\}}$$
(42)

$$\sigma_{pLM} = t_{(1-\alpha/2)}^{(n-2)} \cdot \sigma_r \cdot \sqrt{\left\{1 + 1/n + (y - \bar{y})^2 / \left[\sum_{(i=1)}^n (y_i - \bar{y})^2\right]\right\}} + \sqrt{\left[(\partial \sigma_{pLM} / \partial V_L)^2 \cdot \sigma_{VL}^2 + (\partial \sigma_{pLM} / \partial V_1)^2 \cdot \sigma_{V1}^2\right]}$$
(43)

3. Précision du module Ménard EM sur les exemples types

Les exemples type ont été fourni par Fondasol (Jacquard et Varaksin, 2018). Dans les calculs suivants, nous utilisons (Tableau 1) les erreurs des procédures A et B (ou écart

type) déduits de la norme (AFNOR, 2015). L'erreur de la procédure de type C a été proposée par les constructeurs de matériels pressiométriques (Arsonnet et al., 2011)

Variable	Unité	Procédure A	Procédure B	Procédure C
Longueur	mm	1	1	1
Diam. tube calib.	mm	0,1	0,1	0,1
Profondeur	m	0,2	0,2	0,2
Temps	S	1	0,5	0,5
Pression	kPa	25	15	10
Volume	cm ³	2	1	0,1
Poids Volumique	kN/m ³	0,1	0,1	0,1

Tableau 1 : Erreurs utilisées dans les calculs des exemples types

3.1. Erreur de E_M Procédure A pour σ_p =25kPa et σ_V =2cm³

Une première série de calculs suppose que l'opérateur note les mesures visuellement avec une erreur de lecture des pressions p_r de 25kPa et une erreur sur les volumes V_r de 2cm³, L'erreur sur le cote z de la sonde est supposée égale à 0,2m, On trouve dans le Tableau 2 l'erreur pour les variables principales et dans le Tableau 3 le calcul de l'erreur pour le module pressiométrique qui varie entre 0,1 et 18%,

Tableau 2 : Erreur pour les variables principales et la procédure A

	Valeur	Erreur
d _i (mm)	66	0,1
l _s (mm)	210	1
γ_{w} (kN/m ³) à 20°	97,89	0,1
V _c (cm3)	144,8	3,6
V _s (cm3)	520,7	13,9

La détermination du volume de la sonde par l'essai d'expansion propre (résistance) est indiquée pour l'essai dans le forage A à 29m (Figure 1) pour l'essai dans le forage E à 1,5m (Figure 2), Sur ces figures, il a été porté également les droites Minimum et Maximum correspondant à la droite moyenne +/- un écart type (34,1% de précision). On

Figure 2 : Précision de V_p par la régression linéaire liée la dilatation propre (calibration) - Essai à 1,5m, sondage E

remarque une erreur sur le volume V_p liée à la régression linéaire σ_{Vp} (17) plus importante (col.3, Tableau 3) que celle sur les volumes unitaires de la procédure A (col.3, lin,7, Tableau 1) ; l'erreur liée à la régression linéaire σ_{Vp} n'est pas plus faible si la précision est meilleure, Les valeurs de σ_{Vs} (18) ne changent pas quand on passe de la procédure A à B ou C (col.4, Tableau 3) ; il existe une erreur irréductible liée à la procédure de régression linéaire qui ne peut pas être réduite par l'amélioration de la qualité de la mesure (voir

col.4, Tableau 3 à Tableau 5). L'amélioration de la précision passe par une meilleure approximation de V_p qui pourrait être afinée par une approximation parabolique plutôt que linéaire (Figure 1). La variance expérimentale du module Ménard des essais types est portée σ_{Eexp} col.12. Par comparaison la variance calculée σ_{EM} col.8 montre une erreur des essais B plus faible. Ceci est sans doute lié à la variabilité du choix de p₁ et p₂ qui est supérieure expérimentalement à 25kPa.

Eq,	Profm	$\overset{\sigma_{Vp}}{\text{cm}^3}$	σ_{Vs} cm ³	a cm ³ /kPa	σ _a cm³/kPa	Е _м MPa	σ _{EM} MPa	Err, rel,	Tol, MPa	E _{ExpMoy} MPa	$\sigma_{ ext{Eexp}}$ MPa
For,		(17)	(18)		(28)	(9)	(33)	%			
A	29	3,6	7,7	3,380	0,1891	152,3	9,6	6,3	26,8	133	13,3
В	21	4,5	8,6	3,470	0,2793	21,6	0,8	3,9	2,3	24	4,4
В	22	4,5	8,6	3,470	0,2793	20,6	1,8	8,9	4,8	21,8	5,35
E	1,5	2,6	6,7	1,411	0,1282	5,3	0,3	6,5	2,4	4,99	0,3

Tableau 3 : Calcul de précision du module pressiométrique E_M; procédure A

3.2. Erreur de E_M Procédure B pour σ_p =15kPa et σ_V =1cm³

Une seconde série de calcul suppose des mesures réalisées automatiquement avec une erreur de lecture des pressions p_r de 15kPa et une erreur sur les volumes V_r de 1cm³, L'erreur sur le cote z de la sonde est égale à 0,2m (Tableau 4). On note une diminution de l'erreur sur le module Ménard σ_{EM} (col.8, Tableau 4) des essais A et B.

ιu												
Ęq,	Profm	σ_{Vp}	σ_{Vs}	a	σ_a	Ем	σ_{EM}	Err,	Tol,	E _{ExpMoy}	σ_{Eexp}	
		cm³	cm³	cm°/kPa	cm³/kPa	MPa	MPa	rel,	MPa	MPa	MPa	
For,		(17)	(18)		(28)	(9)	(33)	%				
Α	29	2,6	6,7	3,380	0,1891	152,3	5,0	3,2	11,9	133	13,3	
В	21	3,5	7,6	3,470	0,2793	21,6	0,5	2,2	1,3	24	4,4	
В	22	3,5	7,6	3,470	0,2793	20,6	1,0	4,9	2,7	21,8	5,35	
E	1,5	1,6	5,7	1,411	0,1282	5,3	0,5	9,9	1,4	4,99	0,3	

Tableau 4 : Calcul de précision du module pressiométrique E_M; procédure B

3.3. Erreur de E_M Procédure C pour σ_p =10kPa et σ_V =0,1cm³

Une troisième série fait l'hypothèse que les mesures sont réalisées automatiquement avec une erreur de lecture des pressions p_r de 10kPa et une erreur sur les volumes V_r de 0,1cm³. L'erreur de la cote z de la sonde est égale à 0,1m (Tableau 5). Il y a une amélioration qui permet presque de doubler la précision du module Ménard par rapport à la procédure B.

∖Eq,	Profm	σ_{Vp}	σ_{Vs}	a	σ_{a}	Е _м	σ_{EM}	Err,	Tol,	E _{ExpMoy}	$\sigma_{ ext{Eexp}}$	
		cm ^{'3}	cm ³	cm³/kPa	cm³/kPa	MPa	MPa	rel,	MPa	MPa	MPa	
For,		(17)	(18)		(28)	(9)	(33)	%				
Α	29	1,7	5,8	3,380	0,1891	152,3	1,5	1,0	4,0	133	13,3	
В	21	2,6	6,7	3,470	0,2793	21,6	0,3	1,2	1,3	24	4,4	
В	22	2,6	6,7	3,470	0,2793	20,6	0,5	2,7	2,7	21,8	5,35	
E	1,5	0,7	4,8	1,411	0,1282	5,3	0,3	6,7	1,4	4,99	0,3	

Tableau 5 : Calcul de précision du module pressiométrique E_M; procédure C

4. Erreur de la pression limite p_{LM} sur les exemples types

4.1. Par régression linéaire V¹ pour $\sigma_p=25$ kPa et $\sigma_V=2$ cm³ Procédure A

Les calculs de l'erreur sont fait à partir de l'équation σ_{pLM} (43) qui tient compte de

l'incertitude de régression linéaire σ_r (41) et à l'incertitude des pressions et volumes. On constate (Figure 3 - Figure 6) et (Tableau 6 - Tableau 8) un alignement linéaire marqué des points expérimentaux et une faible écart des limites hautes et basses liées à la régression linéaire (calculée pour une variation de 34,1%) ; il n'y a aucune influence de l'erreur de la mesure de pression et de volume sur l'erreur de la pression limite ; celle-ci est seulement affectée par la qualité de l'alignement des points après la pression p₂, c'est-à-dire par la relation (43) et la médiocre précision sur V_s; l'erreur théorique (col.5, Tableau 6) est plus faible que l'erreur des essais types (col.9, Tableau 6) sans doute liée une plus grande variabilité expérimentale de la pression de fluage, supérieure à 25kPa.

Eq,	Profondeur	σ_r	p_{LM}	σ_{pLM}	Erreur	Tolérance	PLMMoy	σ_{exp}
	m	MPa	MPa	MPa	relative	MPa	MPa	MPa
For,		(41)	(36)	(43)	%	(4)		
Α	29	0,08	15,4	0,32	0,32	2,0	11,2	2,19
В	21	0,02	3,9	0,17	0,17	4,3	3,8	0,29
В	22	0,01	3,0	0,06	0,06	2,0	3,0	0,34
E	1,5	0,02	0,79	0,06	0,06	7,5	0,77	0,06

Tableau 6 : Calcul de précision de la pression limite pLM par régression linéaire; procédure A

4.2. Par régression linéaire V¹ pour σ_p =15kPa et σ_V =1cm³ - Procédure B

Tableau 7 : Calcul de précision de la pression limite pLM par régression linéaire; procédure B

Eq,	Profondeur	σ_r	р _{LM}	σ_{pLM}	Erreur	Tolérance	p _{LMMoy}	σ_{exp}
	m	MPa	MPa	MPa	relative	MPa	MPa	MPa
For,		(41)	(36)	(43)	%	(4)		
А	29	0,08	15,4	0,31	0,31	2,0	11,2	2,19
В	21	0,07	3,9	0,16	0,16	4,1	3,8	0,29
В	22	0,01	3,0	0,05	0,05	1,7	3,0	0,34
E	1,5	0,01	0,79	0,05	0,05	6,3	0,77	0,06

4.3. Par régression linéaire V¹ pour σ_p =10kPa et σ_V =0,1cm³ - Procédure C

Tableau 8 : Calcul de précision de la pression limite pLM par régression linéaire; procédure C

Eq,	Profondeur	σ_r	р _{LM}	σ_{pLM}	Erreur	Tolérance	р _{LMMoy}	σ_{exp}
	m	MPa	MPa	MPa	relative	MPa	MPa	MPa
For,		(41)	(36)	(43)	%	(4)		
А	29	0,08	15,4	0,30	0,30	1,9	11,2	2,19
В	21	0,07	3,9	0,15	0,15	3,8	3,8	0,29
В	22	0,01	3,0	0,04	0,04	1,3	3,0	0,34
E	1,5	0,01	0,79	0,04	0,04	5,0	0,77	0,06

Figure 5 : Précision de la pression limite p_{LM} - Essai à 22m, sondage B

5. Conclusion

Pour les trois classes de précisions choisies, le calcul de l'erreur liée aux résultats pressiométriques (module pressiométrique et pression limite) a pu être mené par l'analyse théorique et validée sur un exemple pratique d'essais. Pour le module pressiométrique, l'analyse montre que l'erreur est liée à l'erreur unitaire des pressions et volumes, mais plus encore à l'erreur liée au volume unitaire de la sonde et au choix des pressions p_1 et p_2 . Paradoxalement, on constate également une meilleure précision pour les fortes valeurs du module pressiométrique. La précision du module cyclique suit les mêmes règles que celle du module pressiométrique. Pour la pression limite, l'analyse montre une précision qui n'est pas liée à la précision des mesures de pression et de volume, mais plutôt à la variabilité de la pression de fluage qui affecte la précision sur la pression limite p_{LM} . L'auteur remercie le Projet National ARSCOP pour son soutien financier.

6. Bibliographie

AFNOR, 2015. NF EN ISO 22476-4 Essai pressiométrique Ménard. AFNOR,

Reconnaissance et essais géotechniques.

- AFNOR, 2013. NF P94-261 Justification des ouvrages géotechniques Normes d'ap. nat. de l'Eurocode 7 Fondations superficielles Calcul géotechnique.
- Arsonnet, G., Baud, J.-P., Gambin, M., Heintz, R., 2011. L'HyperPac 25 MPa comble le vide entre le pressiomètre Ménard et le dilatomètre, 15th Eur. Conf. SMGE, Athènes.
- Bigot, G., 2004. Incertitude type associée au module pressiométrique Em. Groupe Miroir Français Essais Géotechniques.
- Cambridge in Situ, 2011. A compilation of the results of ten tests in a variety of materials, selected to show what can be derived from careful pressuremeter testing.

Gachon, J.-C., 1969. Cours de topographie. INSA, Lyon.

Genetay, E., Mehdizadeh, R., 2018. Quantification de l'incertitude sur le module

pressiométrique de Ménard due aux erreurs, 10èmes jour. Fiab. Mat. Struct., Bordeaux.

- GUM, 2008. Evaluation des données de mesure Guide pour l'expression de l'incertitude de mesure. JCGM 100, 132.
- Jacquard, C., Varaksin, S., 2018. Rapport d'analyse de l'enquête relative à la pratique des essais pressiométriques. ARSCOP Fondasol.
- Lalère, B., 2011. Estimation de l'incertitude de mesure appliquée aux résultats de mesures des paramètres physico-chimiques de l'eau. LNE ONEMA L010705, 40.
- Monnet, J., 2016. Les essais in situ en géotechnique, ISTE Edition. ed, Génie Civil et Géomécanique. 978-2-85978-522-2.
- Poreba, M., 2014. Qualification et amélioration de la précision de systèmes de balayage laser mobiles par extraction d'arêtes. Paris-Tech, Paris.
- Rouaud, M., 2013. Calcul d'incertitudes. Creative Commons.

8